AQA Maths M2

Topic Questions from Papers
 Circular Motion

Answers

(Q2, Jan 2006)

$2 \text { (a) }$ (b)	$\begin{aligned} & \frac{1}{2} m v^{2}=\frac{1}{2} m \times 2^{2}+m g(3-3 \cos \theta) \\ & v^{2}=4+6 g(1-\cos \theta) \mathrm{AG} \\ & m g \cos \theta=m \frac{v^{2}}{3} \\ & 3 g \cos \theta=4+6 g-6 g \cos \theta \\ & \cos \theta=\frac{4+6 g}{9 g} \\ & \theta=44.6^{\circ} \end{aligned}$	M1 A1 dM1 A1 M1 A1 dM1 A1 A1	4 5	Three term energy equation Correct equation Solving for v^{2}. Correct result from correct working Resolving towards the centre Correct equation Solving for $\cos \theta$ Correct $\cos \theta$ Correct angle
	Total		9	

(Q6, Jan 2006)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
3 \text { (a) }
\] \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \frac{1}{2} m U^{2}=\frac{1}{2} m v^{2}+m g l\left(1-\cos 60^{\circ}\right) \\
\& U^{2}=v^{2}+g l \\
\& v=\sqrt{U^{2}-g l} \\
\& T-m g \cos 60^{\circ}=m \frac{v^{2}}{l} \\
\& T=m\left(\frac{U^{2}-g l}{l}+\frac{g}{2}\right)=m\left(\frac{U^{2}}{l}-\frac{g}{2}\right)
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
dM1 \\
A1 \\
M1 \\
dM1 \\
A1 \\
dM1 \\
A1
\end{tabular} \& 4

5 \& | three/four term energy equation with a trig term correct equation solving for v or v^{2} correct v in a simplified form |
| :--- |
| resolving towards the centre of the circle with three terms substituting for v^{2} correct equation making T the subject correct expression for T. Simplification not necessary. |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

$4 \text { (a) }$ (b)	$\begin{aligned} & a=\frac{14^{2}}{50}=3.92 \\ & F=1200 \times 3.92 \mathrm{AG} \\ &=4704 \mathrm{~N} \\ & R=1200 \times 9.8=11760 \\ & 4704 \leq \mu \times 11760 \\ & \mu \geq \frac{4704}{11760} \\ & \mu \geq 0.4 \end{aligned}$		M1 A1 dM1 A1 B1 M1 A1	4 3	finding acceleration correct acceleration use of $F=m a$ correct force from correct working normal reaction applying $F \leq \mu R$ correct result from correct working
		Total		7	

(Q5, June 2006)

$\begin{aligned} & 5 \text { (a) } \\ & \\ & \text { (b) }\end{aligned}$	$\begin{aligned} & m g 2 a=\frac{1}{2} m v^{2} \\ & v=2 \sqrt{g a} \end{aligned}$		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	3	Energy equation
			A1		
	$T-m g=\frac{m v^{2}}{2 a}$		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		All terms for M1, no component
	$T=3 m g$		A1F	3	ft if $T>0$
		Total		6	

(Q3, Jan 2007)

6 (a)	$\frac{40 \times 2 \pi}{60}=\frac{4 \pi}{3}(\mathrm{rad} / \mathrm{sec})$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	2	
(b)	$\begin{aligned} a=\omega^{2} r \quad & =\left(\frac{4 \pi}{3}\right)^{2} \times 0.2 \\ & =\frac{16 \pi^{2}}{45} \end{aligned}$	M1 A1	2	Accept $0.356 \pi^{2}$ (3sf)
(c)(i)		B1	1	
(ii)	Vertically No acceleration, forces balance $m g=T \cos \theta$	B1	1	
(iii)	Horizontally			
	$T \sin \theta=m \times \frac{16 \pi^{2}}{45}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		ft acceleration
	$T \cos \theta=m g$	m1		SC $\tan \theta=\frac{\omega^{2} r}{g} \quad 1^{\text {st }} 3$ marks for quoting and using correctly
	$\begin{aligned} & \tan \theta=\frac{16 \pi^{2}}{45 g} \\ & \text { or } \\ & \tan \theta=0.358(08) \\ & \theta=20^{\circ} \end{aligned}$	A1F A1F	5	ft provided M1 earned in (b)
	Total		11	

7 (a) (b)	Using conservation of energy (lowest and highest points): $\begin{aligned} & \frac{1}{2} m(7 v)^{2}=\frac{1}{2} m v^{2}+2 m g a \\ & \frac{48}{2} v^{2}=2 g a \\ & \therefore v=\sqrt{\frac{a g}{12}} \end{aligned}$ Velocity at A is $\sqrt{\frac{a g}{12}}$ Resolving vertically at A : $\begin{aligned} & m \frac{v^{2}}{a}+R=m g \\ & R=m g-\frac{m}{a} \times \frac{a g}{12} \\ & \quad=\frac{11}{12} m g \end{aligned}$	M1 A1A1 M1 A1 M1 A1,A1 A1	4	A1 for $7 v$ and v Needs 48 or 24 AG 3 terms A1 correct 3 terms, A1 correct signs $\left(1-\frac{1}{12}\right) m g$ M1A2 Condone $-\frac{11}{12} m g$
	Total		9	

(Q5, June 2007)

(Q5, Jan 2008)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
10 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Conservation of energy:
\[
\begin{aligned}
\& \frac{1}{2} m(3 \sqrt{a g})^{2}+m g 2 a=\frac{1}{2} m v^{2} \\
\& \frac{9}{2} m g a+2 m g a=\frac{1}{2} m v^{2} \\
\& v=\sqrt{13 a g}
\end{aligned}
\] \\
At \(A\), consider vertical forces:
\[
\begin{aligned}
\& T-m g=\frac{m \nu^{2}}{a} \\
\& T=m g+13 m g \\
\& T=14 m g
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
A1 \\
A1 \\
M1A1 \\
m1 \\
A1ft
\end{tabular} \& 4

4 \& | M1 for 3 terms: 2 KE and PE |
| :--- |
| M1 for 3 terms, 2 correct |
| ft from (a) |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

(Q7, June 2008)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
13 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \frac{1}{2} m v^{2}=\frac{1}{2} m \times 8^{2}-m g 2 \\
\& v^{2}=64-39.2 \\
\& \quad=24.8 \\
\& v=4.98
\end{aligned}
\] \\
Using \(F=m a\) radially:
\[
\begin{aligned}
R \& =m g \cos 60+\frac{m v^{2}}{r} \\
\& =6 g \cos 60+\frac{6 \times 24.8}{4} \\
\& =66.6 \mathrm{~N}
\end{aligned}
\]
\end{tabular} \& \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
B1 \\
A1
\end{tabular} \& 3

4 \& | M1 3 terms, 2 KE and 1 PE |
| :--- |
| Accept $\sqrt{24.8}$ |
| M1 3 correct terms (not necessarily correct signs) |
| B1 for 60° |

\hline \& \& Total \& \& 7 \&

\hline
\end{tabular}

(Q7, Jan 2009)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
14 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Resolving vertically: \\
\(T \cos 60+T \cos 40=m g\) \\
\(1.266 T=6 g\)
\[
T=46.4 \mathrm{~N}
\] \\
Radius of circle is \(0.6 \tan 60\) \\
Horizontally:
\[
\begin{aligned}
\& \frac{m v^{2}}{r}=T \cos 50+T \cos 30 \\
\& \frac{6 v^{2}}{1.039}=\quad 46.4 \cos 50+46.4 \cos 30 \\
\& v^{2}=12.123 \\
\& \text { Speed is } 3.48 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 4

4 \& | AG no marks if g deleted $r=1.039 \text { or } 1.04$ |
| :--- |
| Accept sin instead of cos for M1 |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 15 (a) \& \begin{tabular}{l}
By conservation of energy to point where \(Q P\) makes an angle \(\theta\) with upward vertical:
\[
\begin{aligned}
\& \frac{1}{2} m v^{2}=\frac{1}{2} m u^{2}-m g a(1+\sin \theta) \\
\& v^{2}=u^{2}-2 a g(1+\sin \theta)
\end{aligned}
\] \\
Resolve radially
\[
\begin{aligned}
R \& =\frac{m v^{2}}{a}-m g \sin \theta \\
\& =\frac{m u^{2}}{a}-3 m g \sin \theta-2 m g
\end{aligned}
\] \\
When particle leaves the track, \(R=0\)
\[
\begin{aligned}
\& 0=3 m g-3 m g \sin \theta-2 m g \\
\& \sin \theta=\frac{1}{3} \\
\& \theta=19.5^{\circ}
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& 6

4 \& | for 3 terms, 2 KE and 1 PE $m g a(1+\sin \theta) \text { term }$ |
| :--- |
| M1 for 3 terms, include $\sin \theta$ or $\cos \theta$ |
| AG |
| SC3 $\sin ^{-1} \frac{1}{3}$ |
| accept 19.4° or $\theta=0.340^{\circ}$ |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

(Q7, June 2009)

(Q6, Jan 2010)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
17 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Using conservation of energy:
\[
\begin{aligned}
\& \frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}-m g h \\
\& \frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}-m g a(1-\cos \theta) \\
\& v^{2}=u^{2}+2 g a(1-\cos \theta) \\
\& v=\left(u^{2}+2 g a[1-\cos \theta]\right)^{\frac{1}{2}}
\end{aligned}
\] \\
Using \(F=m a\) radially,
\[
m g \cos \theta-\mathrm{N}=\frac{m v^{2}}{a}
\] \\
Particle leaves surface of hemisphere when \(\mathrm{N}=0\)
\[
\begin{aligned}
\& m g \cos \theta=\frac{m}{a}\left(u^{2}+2 g a[1-\cos \theta]\right) \\
\& \cos \theta=\frac{u^{2}}{g a}+2-2 \cos \theta \\
\& \cos \theta=\frac{1}{3}\left(\frac{u^{2}}{g a}+2\right)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
M1A1 \\
A1 \\
M1A1 \\
B1 \\
M1 \\
A1
\end{tabular} \& 5

5 \& | M1 for 3 terms, 2 KE and PE or 4 terms, 2 KE and 2 PE M1A1 for finding h AG |
| :--- |
| M1 Correct 3 terms |
| A1 Correct signs $(-\mathrm{N}$ or +N$)$ |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

(Q7, Jan 2010)

18 (a)	Using conservation of energy: $\frac{1}{2} m v^{2}=3 m g(1-\cos \theta)$ $v^{2}=6 g(1-\cos 15)$ $v=(6 g[1-\cos 15])^{\frac{1}{2}}$ $=1.42$	M1A1		M1 $\frac{1}{2} m v^{2}=m g h$
(b)When particle is at rest, resolve radially $T=m g \cos 15$ $22=m g \cos 15$ A1 $m=2.32$ 4	SC3: 1.41			
		M1A1		M1 $T-m g \cos 15=\frac{m v^{2}}{r}$ or $T=m g \sin 15$

(Q9, June 2010)

(Q5, Jan 2011)

21 (a) By conservation of energy
$\frac{1}{2} m(5 v)^{2}=\frac{1}{2} m(3 v)^{2}+m g 2 a$
$8 v^{2}=2 a g$
$v=\sqrt{\frac{a g}{4}}$ or $\frac{1}{2} \sqrt{a g}$
(b) Greatest and least values of tension are at the highest and lowest points of its path
At top, $T=\frac{m(3 v)^{2}}{a}-m g$

$$
=\frac{5}{4} m g
$$

At $B, \quad T=\frac{m(5 v)^{2}}{a}+m g$
$=\frac{29}{4} m g$
Ratio is $29: 5$

M1		M1 for 3 terms, 2 KE and PE
A1		
A1		
A1	4	
M1		
A1ft		
M1 must be positive tension		
A1ft	5	CAO Condone $5: 29$ or $1: 5.8$
A1	5	

(Q6, Jan 2011)

22 (a)	Resolving vertically $T \cos 30+20 \cos 50=4 g$ $\begin{aligned} & T \cos 30=26.344 \\ & T=30.4 \mathrm{~N} \end{aligned}$ Horizontally: $\frac{m v^{2}}{r}=20 \cos 40+T \cos 60$ $\begin{aligned} & \frac{4 \times 5^{2}}{r}=30.53 \\ & \\ & r=3.27537 \\ & =3.28 \end{aligned}$	M1A1 A1 A1 M1 A1F dM1 A1	4 4 4 	M1: Three terms, which must include $4 g$, $T \cos \theta$ or $T \sin \theta$ and $20 \cos \theta$ or $20 \sin \theta$, where $\theta=30,40,50$ or 60 . A1: Correct terms A1: Correct equation A1: Correct final answer. Accept 30.4 or AWRT 30.42. Accept 30.4 or 30.5 or AWRT 30.45 from $g=9.81$. M1: Three terms, which must include $\frac{m v^{2}}{r}$ or $\frac{4 \times 5^{2}}{r}, T \cos \theta$ or $T \sin \theta$ and $20 \cos \theta$ or $20 \sin \theta$, where $\theta=30,40,50$ or 60. A1F: Correct equation. May include T, m and v. dM 1 : Substitution of values for T, m and v. Equation of form $\frac{4 \times 5^{2}}{r}=$ number A1: Correct answer. Accept 3.27 or 3.28 or AWRT 3.28. Accept 3.27 or AWRT 3.27 from $g=$ 9.81 . Note: Do not accept $\frac{m v^{2}}{r}=30.4$ or similar.
	Total		8	

23 (a) Using conservation of energy (lowest and highest points)
$\frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+m g(2 a)$
$u^{2}=v^{2}+4 a g$
For complete revolutions, $v>0$
$\therefore u^{2}>4 a g$
$u>2 \sqrt{a g}$
AG

Or
Use of PE at top and KE at B
Correct PE and KE
Correct deduction including inequality
(b)(i)

C of Energy
$\frac{1}{2} m u^{2}=\frac{1}{2} m v^{2}+m g a(1+\sin \theta)$
$v^{2}=\left(\sqrt{\frac{9}{2} a g}\right)^{2}-2 g a(1+\sin \theta)$
$=\frac{5}{2} a g-2 a g \sin \theta$
Resolve radially
$\pm R=-m g \sin \theta+\frac{m v^{2}}{a}$
$=-m g \sin \theta+\frac{5}{2} m g-2 m g \sin \theta$
$=-3 m g \sin \theta+\frac{5}{2} m g$
$=\left(\frac{3}{4}-\frac{9}{10} \sin \theta\right) g \mathbf{O E}$ (must include g)
(ii) When this reaction is zero,
$\left(\frac{3}{4}-\frac{9}{10} \sin \theta\right) g=0$
$\sin \theta=\frac{5}{6}$
θ is 56.4° above horizontal

M1A1		M1: Equation for conservation of energy with two KE terms and one or two PE terms. May see m or 0.3. A1: Correct equation.
A1	3	A1: Correct result with statement of $v>0$ and some intermediate working including $4 a g$ term.
(M1) (A1) (A1)		
M1A1		M1: Equation for conservation of energy with two KE terms and one or two PE terms including a $\sin \theta$. May see m or 0.3 . A1: Correct equation.
M1A1		M1: Three term equation from resolving radially. Correct three terms, but condone signs and replacement of sin by cos. A1: Correct equation. May see m or 0.3.
A1	5	A1: Simplified correct final answer. Condone $\left(\frac{9}{10} \sin \theta-\frac{3}{4}\right) g$
M1		M1: Putting their reaction equal to zero.
A1	2	A1: Correct angle. Accept AWRT 56.44.
	10	

24

$$
\begin{aligned}
& R=m g \\
& F=0.85 \mathrm{mg} \\
& \frac{m v^{2}}{r}=0.85 \mathrm{mg} \\
& v^{2}=34 \times 0.85 \times g \\
& =283.22 \\
& v=16.8 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

M1		
A1		
M1A1		condone $\frac{m v^{2}}{r}=0.85 R$ (for M1A1)
m1		dependent on both M1s
A1	6	
	$\mathbf{6}$	

(Q5, Jan 2012)

25 (a)
by conservation of energy:
$\frac{1}{2} m(u)^{2}=\frac{1}{2} m(v)^{2}+m g 2 a$
$v^{2}=u^{2}-4 a g$
(b)(i)
at point $\mathrm{A} ; T_{l}=\frac{m(v)^{2}}{a}-m g$
at point B; $T_{2}=\frac{m(u)^{2}}{a}+m g$
$\frac{T_{1}}{T_{2}}=\frac{2}{5}$
$5\left(\frac{m(v)^{2}}{a}-m g\right)=2\left(\frac{m(u)^{2}}{a}+m g\right)$
$5\left(\frac{m\left(u^{2}-4 a g\right)}{a}-m g\right)$
$=2\left(\frac{m(u)^{2}}{a}+m g\right)$
$5 u^{2}-20 a g-5 a g=2 u^{2}+2 a g$
$3 u^{2}=27 a g$
$u=3 \sqrt{a g}$
(ii)
$u^{2}=v^{2}+4 a g \rightarrow v=\sqrt{5 a g}$ ratio $u: v=3: \sqrt{5}$

(Q5, June 2012)

27 (a) (b)	Using conservation of energy: $\begin{aligned} \frac{1}{2} m v^{2} & =m g h \\ \frac{1}{2} m v^{2} & =m g 2.4(1-\cos 18) \\ v^{2} & =4.8 g(1-\cos 18) \\ & =2.302 \\ v & =1.52 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Resolving vertically: $\begin{aligned} \mathrm{T} & =m g+\frac{m v^{2}}{a} \\ & =22 g+\frac{22 \times 2.302}{2.4} \\ & =236.7 \ldots \mathrm{~N} \\ & =237 \mathrm{~N} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { m1A1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	M1 for 2 or 3 terms, 1 KE and 1 or 2 PE m1A1 for finding h Condone 1.51 Correct 3 terms Correct signs Accept 236 N
	Total		7	

(Q6, Jan 2013)

29 (a) (b)	Using conservation of energy: $\begin{aligned} & \frac{1}{2} m v^{2}=\frac{1}{2} m u^{2}-m g h \\ & \frac{1}{2} \times 3 \times v^{2}=\frac{1}{2} \times 3 \times 4^{2}-3 \times g \times 1.2(1-\cos 25) \end{aligned}$ $\begin{aligned} & v^{2}=4^{2}-2.4 \times g(1-\cos 25) \\ & v^{2}=16-2.2036 \\ & v=3.71 \mathrm{~ms}^{-1} \end{aligned}$ Resolving radially: $\begin{aligned} T & =m g \cos 25+\frac{m v^{2}}{a} \\ & =26.645+34.491 \\ & =61.1 \mathrm{~N} \end{aligned}$	M1 A1 A1 M1A1 A1	4	for 3 terms, 2 KE and 1 PE M1A1 for finding h [M1 for 1.2(1-cos 25 or $\sin 25)$] Accept 3.7, 3.70, 3.72 M1 accept $\cos 25$ or $\sin 25,+$ or $-\operatorname{sign}$ and $\neq 2$ A1 fully correct and substituted Accept 61.0 or 61
	Total		7	

(Q7, Jan 2013)

30	In limiting equilibrium, using $F=\mu R$ Frictional force is $0.2 \times m g$ Resolve horizontally $\frac{m \times 15^{2}}{r}=0.2 \times m g$ $r=\frac{15^{2}}{0.2 \times g}$ $=114.79$ $=115$	M1A1		
		A1	4	

(Q5, June 2013)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
31 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Using conservation of energy:
\[
\begin{aligned}
\& \frac{1}{2} m(5 u)^{2}=\frac{1}{2} m(2 u)^{2}+2 a m g \\
\& \frac{1}{2} \times 21 \times u^{2}=2 a g \\
\& u=\sqrt{\frac{4 a g}{21}}
\end{aligned}
\] \\
Using conservation of energy with speed at point \(S\) to be \(V\) :
\[
\begin{aligned}
\& \frac{1}{2} m(5 u)^{2}=\frac{1}{2} m(V)^{2}+a m g(1+\cos 60) \\
\& \frac{1}{2} m V^{2}=\frac{1}{2} m(5 u)^{2}-1 \frac{1}{2} a m g \\
\& V^{2}=25 \times\left(\frac{4 a g}{21}\right)-3 a g \\
\& V^{2}=\frac{37 a g}{21}
\end{aligned}
\] \\
Resolving radially at point \(S\) :
\[
\begin{aligned}
R \& =-m g \cos 60+\frac{m(V)^{2}}{a} \\
\& =-\frac{1}{2} m g+\frac{37 m g}{21} \\
\& =\frac{53}{42} m g \text { or } 1.26 m g
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1A1 \\
A1
\end{tabular} \& 4

5 \& | M1 for 3 [or 4] terms: 2 KE |
| :--- |
| and 1[or 2] PE |
| M1A1 for finding h |
| Or $\frac{1}{2} m(V)^{2}=\operatorname{amg}\left(1-\cos 60^{\circ}\right)+\frac{1}{2} m\left(2 \sqrt{\frac{4 a g}{21}}\right)^{2}$ |

\hline \& Total \& \& 9 \&

\hline
\end{tabular}

(Q8, June 2013)

